2024等差数列教学设计(精选3篇)

简介:法务时刻小编为你整理了多篇相关的《2024等差数列教学设计(精选3篇)》,但愿对你工作学习有帮助,当然你在法务时刻还可以找到更多《2024等差数列教学设计(精选3篇)》。

写写帮会员为你精心整理了3篇《等差数列教学设计》的范文,但愿对你的工作学习带来帮助,希望你能喜欢!

篇一:等差数列教学设计

等差数列教学设计

教学目标

1。通过教与学的互动,使学生加深对等差数列通项公式的认识,能参与编拟一些简单的问题,并解决这些问题;

2。利用通项公式求等差数列的项、项数、公差、首项,使学生进一步体会方程思想;

3。通过参与编题解题,激发学生学习的兴趣。

教学重点,难点

教学重点是通项公式的认识;教学难点是对公式的灵活运用.

教学用具

实物投影仪,多媒体软件,电脑。

教学方法

研探式。

教学过程

一。复习提问

前一节课我们学习了等差数列的概念、表示法,请同学们回忆等差数列的定义,其表示法都有哪些?

等差数列的概念是从相邻两项的关系加以定义的,这个关系用递推公式来表示比较简单,但我们要围绕通项公式作进一步的理解与应用。

二。主体设计

通项公式 反映了项 与项数 之间的函数关系,当等差数列的首项与公差确定后,数列的每一项便确定了,可以求指定的项(即已知 求)。找学生试举一例如:“已知等差数列 中,首项,公差,求。”这是通项公式的简单应用,由学生解答后,要求每个学生出一些运用等差数列通项公式的题目,包括正用、反用与变用,简单、复杂,定量、定性的均可,教师巡视将好题搜集起来,分类投影在屏幕上。

1。方程思想的运用

(1)已知等差数列 中,首项,公差,则-397是该数列的第______项。

(2)已知等差数列 中,首项,则公差

(3)已知等差数列 中,公差,则首项

这一类问题先由学生解决,之后教师点评,四个量,在一个等式中,运用方程的思想方法,已知其中三个量的值,可以求得第四个量。

2。基本量方法的使用

(1)已知等差数列 中,求 的.值。

(2)已知等差数列 中,求。

若学生的题目只有这两种类型,教师可以小结(最好请出题者、解题者概括):因为已知条件可以化为关于 和 的二元方程组,所以这些等差数列是确定的,由 和 写出通项公式,便可归结为前一类问题。解决这类问题只需把两个条件(等式)化为关于 和 的二元方程组,以求得 和,和 称作基本量。

教师提出新的问题,已知等差数列的一个条件(等式),能否确定一个等差数列?学生回答后,教师再启发,由这一个条件可得到关于 和 的二元方程,这是一个 和 的制约关系,从这个关系可以得到什么结论?举例说明(例题可由学生或教师给出,视具体情况而定)。

如:已知等差数列 中,…

由条件可得 即,可知,这是比较显然的,与之相关的还能有什么结论?若学生答不出可提示,一定得某一项的值么?能否与两项有关?多项有关?由学生发现规律,完善问题

(3)已知等差数列 中,求 ; ; ; ;…。

类似的还有

(4)已知等差数列 中,求 的值。

以上属于对数列的项进行定量的研究,有无定性的判断?引出

3。研究等差数列的单调性,考察 随项数 的变化规律。着重考虑 的情况。此时 是 的一次函数,其单调性取决于 的符号,由学生叙述结果。这个结果与考察相邻两项的差所得结果是一致的。

4。研究项的符号

这是为研究等差数列前 项和的最值所做的准备工作。可配备的题目如

(1)已知数列 的通项公式为,问数列从第几项开始小于0?

(2)等差数列 从第________项起以后每项均为负数。

三。小结

1。用方程思想认识等差数列通项公式;

2。用函数思想解决等差数列问题。

四。板书设计

等差数列通项公式

1。方程思想的运用

2。基本量方法的使用

3。研究等差数列的单调性

4。研究项的符号

篇二:教学设计等差数列

教学目标

1.明确等差数列的定义.

2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3.培养学生观察、归纳能力.

教学重点

1.等差数列的概念;

2.等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教学方法

启发式数学

教具准备

投影片1张(内容见下面)

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法――通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

③生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②

-2n(n≥1)

(n≥2)

对于数列③(n≥1)

(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

…… 此处隐藏2565字,全部文档请下载后查看。喜欢就下载吧 ……

本文来自管理员投稿,不代表资源分享网立场,如若转载,请注明出处:https://www.duduzhe.cn/fb79aC2pXVAVQB1c.html

打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2024年12月10日
下一篇 2024年12月10日

相关推荐

  • 等差数列求和方法总结(必备3篇)

    等差数列求和方法总结 第1篇 一个数列an的前n项和Sn中,某些项合在一起就具有特殊的`性质,因此可以几项结合求和, 再求Sn,称之为并项求和法。形如an=(-1)nf(n)的类型,就可以采用相邻两项合并求解。如例3中可用并项求和法求解。 例3:求S=-12+22-32+42-…-992+1002 解S

    2024-12-10 22:27:09
    38 0

发表回复

8206

评论列表(0条)

    暂无评论